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1 Introduction

Let Ω be a space with a potential H : Ω → R along with a parameter β > 0. We define the associated Gibbs
measure as µ : Ω → [0, 1] as

µ(σ) =
e−βH(σ)

Z
, where Z =

∑
ω∈Ω

e−βH(σ). (1.1)

A widespread technique to sample from µ is to design a Markov chain with transition matrix P whose
stationary distribution is π. A long line of research has to been to elucidate the connections between
properties of µ to those of P . In this note we will discuss in particular the connection between uniqueness
of the Gibbs measure in the infinite volume, decay of correlations and mixing times.

As our running example, we will consider the ferromagnetic 2D Ising model. That is, let G(V,E) be a
finite subgraph of Z2 and Ω = {±1}n. For σ ∈ Ω, the potential is then

H(σ) = −
∑

(i,j)∈E

σiσj . (1.2)

Note that this has two minimum energy states: (1, . . . , 1) and (−1, . . . ,−1).
When talking about mixing, we will refer to the mixing time, defined as the minimum time such that a

Markov chain started in any state is δ away from the stationary distribution in TV distance.

∗These notes accompanied a talk given at the Quantum Many-Body seminar at the math department at UC Berkeley.
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2 Nonuniqueness of Gibbs states

We will keep the mathematical formalism to a minimum. For a completely rigorous treatment, see e.g.
[FV17].

We start by defining the notion of the infinite volume Gibbs measure. For ease, we specialize it to the
2D Ising model, but this may be defined in larger generality [Dob68c].

Definition 2.1 (Gibbsian distribution). Let {ξ(t) : t ∈ Z2} be a random field, where ξ : Z2 → {±1}. Let
V = {t1, . . . , t|V |} ⊂ Z2 and x : Z2 \V → {±1} be a set of boundary conditions. Denote by E the set of edges
of Z2. We say that ξ is a Gibbsian distribution if

P
[
ξ(t1) = x1, . . . , ξ(t|V |) = x|V |

]
= qV (x1, . . . , x|V | | x(t)), and (2.1)

P [ξ(t) = x(t)] = 1, t ∈ Zd \ V, (2.2)

where

qV (x1, . . . , x|V | | x(t)) :=
e−βHV (x1,...,x|V ||x(t))∑

x1,...,x|V |∈X e−βHV (x1,...,x|V ||x(t))
, (2.3)

HV (x1, . . . , x|V | | x(t)) := −
∑

1≤i<j≤|V |

xixj1{(ti, tj ∈ E)} −
|V |∑
i=1

∑
t∈Z2\V

xix(t)1{(ti, t) ∈ E}. (2.4)

In words, qV is the Gibbs distribution of V with x(t) as the boundary condition, and HV is the potential
for V along with its boundary. The Gibbsian field is a distribution on Z2 that has the correct conditional
probabilities when restricted to V . One may wonder if such an extension always exists. Existence can be
proven by taking V larger and larger. The next natural question is:

Question 2.2. Are Gibbsians distributions unique for all V, x(t)?

This turns out to not always be the case. For an example, take V to be a
√
n ×

√
n sublattice. The

intuitive idea is that, at low enough temperatures, there are long range correlations since neighboring sites
want to be aligned due to the strong ferromanetic bonds. Hence a boundary condition of all +1 will force a
large fraction of V to be +1, and there will only be scattered islands of −1. The opposite happens if we flip
the boundary. Hence these two configurations lead to different Gibbsian distributions.

To formalize this idea, we use Peierl’s argument [Pei36, Gri64, Bon14]. Our strategy will be to consider
the average magnetization. For σ ∈ V , let

m(σ) =
1

n

n∑
i=1

σ(i) = 1− 2N−(σ)

n
, (2.5)

where N− counts the number of −1’s. So it suffices to compute ⟨N−⟩. First fix all spins on ∂V to +1. Our
strategy will be to represent each possible configuration of V by contours. Enclose each spin by a square,
creating a dual lattice. Then we draw a contour around every square with a −1. We delete two drawn edges
that overlap and, if they meet at corners, shave them a bit so they don’t touch. See Fig. 1 for an illustration.

The set of all such drawings C is in bijection with the set of configurations of V given an assignment of
∂V , since every contour edge indicates different bits on each side of it. Hence, we will count contours instead
of assignments directly. This is easier than counting the signs directly, as it’s hard to know the energy of
an arbitrary configuration, whereas the contours keep track of disagreements – their appear exactly on the
perimeter. Let Γℓ be the set of all possible contours with perimeter ℓ and A(γ) be the area enclosed by
γ ∈

⋃
ℓ Γℓ. Then

⟨N−⟩ =

〈 ∑
γ∈

⋃
ℓ Γℓ

A(γ)1{γ occurs}

〉
=

∑
ℓ

∑
γ∈Γℓ

A(γ) ⟨1{γ occurs}⟩ =
∑
ℓ

∑
γ∈Γℓ

A(γ)P[γ occurs]. (2.6)

So we must compute the area and the probability of each possible contour.
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Figure 1: Left: Illustration of drawing the contours in Peierl’s argument. The boundary is all +1s. Right:
If C is the larger contour on the left, this is C̄. Image partly borrowed from [Bon14].

Lemma 2.3 (Area of contours). Suppose γ ∈ Γℓ. Then

A(γ) ≤ ℓ2

16
. (2.7)

Proof. We can surround the contour with a minimal rectangle with dimensions a×b. Note that the perimeter
of γ can only be larger than the perimeter of the rectangle: 2(a + b) ≤ ℓ. It is a standard optimization
problem that the square is the shape that minimizes area for a fixed perimeter. So we can take a = b = ℓ/4.
Squaring finishes the proof.

Lemma 2.4 (Probability of contour). Suppose that γ ∈ Γℓ. Then

P[γ occurs] ≤ e−2βℓ. (2.8)

This captures the intuition that there should not be many islands with spins opposite to the boundary:
the probability of such islands is exponentially small on their size and β.

Proof. We can write

P[γ occurs] =

∑
C∈C:γ∈C e−βH(C)∑

C∈C e
−βH(C)

, (2.9)

where H(C) is the energy of the drawing C and we wrote γ ∈ C if the contour γ appears in C. If γ ∈ C,
let C̄ be the same drawing, except all signs inside γ are flipped; that is, the contour γ disappears since now
we have agreement across its perimeter; see Fig. 1 for an illustration. Since the only bonds that change are
across the perimeter of γ, it follows that

H(C̄) = H(C)− 2L. (2.10)

Now we remove some of the drawings in the denominator:

P[γ occurs] ≤
∑

C∈C:γ∈C e−βH(C)∑
C̄ : C∈C,γ∈C e−βH(C̄)

=

∑
C∈C:γ∈C e−βH(C)

e2βℓ
∑

C̄ : C∈C,γ∈C e−βH(C)
= e−2βℓ. (2.11)

Lemma 2.5 (Number of contours with perimeter). It holds that

|Γℓ| ≤
2n

ℓ
3ℓ. (2.12)
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Proof. The lattice with n vertices has fewer edges than a 4-regular graph with n vertices, which in turn has
2n edges. Hence there are at most 2n initial locations for edges, and afterwards we can pick one out of 3,
yielding 2n3ℓ. We overcounted since we can start at any edge, so we divide by ℓ.

Returning to Eq. (2.6), we can combine these lemmas to see that

⟨N−⟩ ≤
∑
ℓ

|Γℓ|
ℓ2

16
e−2βℓ =

n

8

∑
ℓ

ℓ(3e−2β)ℓ. (2.13)

For large enough β, this sequence is converging to less than 1/2 let’s say, and returning to Eq. (2.5), we
see that we get positive magnetization. Inverting the boundary, we get the opposite scenario. This shows
that there cannot be a unique infinite-volume Gibbsian distribution.

Question 2.6. When are Gibbsians distributions unique for all V, x(t)?

3 Dobrushin’s conditions for uniqueness

Dobrushin (later joined by Shlosman) developed a long line of work seeking to answer Question 2.6 [Dob68a,
Dob68b, Dob70, DS85, DS87], which culminated in 12 equivalent properties which guarantee the uniqueness
of the Gibbsian distribution. We consider a particular one related to correlations.

Definition 3.1 (Influence matrix). Let x ∈ Ω, i ∈ [n] and π the stationary distribution. Define, for
b ∈ {±1},

πi(x, b) := P
z∼π

[zi = b | zj = xj , j ̸= i]. (3.1)

Also define

Sj := {(x, y) ∈ Ω2 : xk = yk, k ̸= j}, (3.2)

that is, all bitstrings agreeing outside j. Then we define the influence matrix R ∈ Rn×n as

Rij = max
(x,y)∈Sj

||πi(x, ·)− πi(y, ·)||TV. (3.3)

Intuitively, this captures how much the update of bit i is affected by flipping bit j, that is, the influence
of j on i. Naturally, if column j has many entries, j affects many bits; if row i has many entries, i is affected
by many bits. Hence, we can understand correlations by looking at norms of R.

The literature usually refers to the following two conditions:

Dobrushin condition: ∥R∥1 < 1 (max row sum, most affected bit) (3.4)

Dobrushin-Shlosman condition: ∥R∥∞ < 1 (max column sum, most affecting bit) (3.5)

This condition is enough to ensure the uniqueness of the infinite volume Gibbsian distribution. Initially
it was necessary to assume that the underlying graph was a sublattice of Zd, but later [Wei05] showed how
to drop that assumption.

Theorem 3.2 (Uniqueness from Dobrushin’s condition). If ∥R∥1 < 1, then the Gibbsian distribution is
unique for all V, x(t).

4 Dobrushin’s conditions and mixing

Now we turn to the dynamics. We will consider the canonical Glauber dynamics, where we pick a bit a
random, and refresh it according to πi(x, ·). For more background on Glauber dynamics, see Section A.

It turns out that both conditions above, Eqs. (3.4) and (3.5), imply O(n logn) mixing [AH87], and in
fact so does ∥R∥ ≤ 1− ϵ for any norm ∥·∥ [DGJ09]. For spin systems, this is optimal [HS05]. We will prove
the version with the 2-norm studied in [Hay06].
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Theorem 4.1 (Dobrushin condition implies fast mixing). Suppose that ∥R∥2 ≤ 1− ϵ. Then

tmix(δ) ≤
n

ϵ
log

n

δ
. (4.1)

Proof. We will a coupling argument. For background on couplings, see Section B. For x, y ∈ Ω, let two
initial states be X0 = x0, Yo = y0. For t ≥ 0, will run the optimal coupling on (Xt, Yt), that is, at all steps,
we pick the same site i at random to update, and update both copies based on the optimal coupling. Define
the vector p⃗t ∈ Rn so that

pt(i) = P[Xt(i) ̸= Yt(i)]. (4.2)

p⃗ will be our way of tracking coalescence of the two copies. That is, by an union bound,

P[Xt ̸= Yt] ≤
n∑

i=1

pt(i) = ∥p⃗∥1. (4.3)

Let’s see how p(i) evolves in one step. If some j ̸= i is chosen to be updated, which happens with probability
n−1
n , p(i) does not change. If i is chosen, which happens with probability 1

n , then we must compute this
change.

pt+1(i) =

(
1− 1

n

)
pt(i) +

1

n
P[Xt+1(i) ̸= Yt+1(i) | i is chosen] (4.4)

=

(
1− 1

n

)
pt(i) +

1

n
E

Xt,Yt

[P[Xt+1(i) ̸= Yt+1(i) | Xt, Yt, i is chosen]] (4.5)

=

(
1− 1

n

)
pt(i) +

1

n
E

Xt,Yt

||πi(Xt, ·)− πi(Yt, ·)||TV, (4.6)

by the law of total expectation and optimality of the coupling (see Proposition B.6.) Now we perform a hybrid
argument. Let Z(0), . . . , Z(m) ∈ Ω where Z(0) = Xt, Z

(m) = Yt, |Z(k) − Z(k+1)| = 1 and m = |Xt = Yt|,
where | · | is the Hamming weight. Then

pt+1(i) ≤
(
1− 1

n

)
pt(i) +

1

n
E

Xt,Yt

m−1∑
k=0

∣∣∣∣∣∣πi(Z
(k), ·)− πi(Z

(k+1), ·)
∣∣∣∣∣∣
TV

(4.7)

≤
(
1− 1

n

)
pt(i) +

1

n

n∑
j=1

Rij E
Xt,Yt

[1{Xt(j) ̸= Yt(j)}] (4.8)

=

(
1− 1

n

)
pt(i) +

1

n

n∑
j=1

Rijpt(j), (4.9)

by triangle inequality and Eq. (3.3). We can rewrite this as a vector equation,

p⃗t+1 ≤ Ap⃗t with A =

(
1− 1

n

)
I +

1

n
R, (4.10)

and by induction, we have p⃗t = Atp⃗0. Returning to Eq. (4.3), we get

P[Xt ̸= Yt] ≤ ∥p⃗t∥1 (4.11)

=
∥∥Atp⃗0

∥∥
1

(4.12)

≤
√
n
∥∥Atp⃗0

∥∥
2

(Cauchy-Schwarz) (4.13)

≤
√
n∥A∥t2∥p⃗0∥2 (submultiplicativity) (4.14)

≤ n∥A∥t2. (0 ≤ p0(i) ≤ 1) (4.15)
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Finally, by the Dobrushin condition,

∥A∥2 ≤ 1− 1

n
+

1

n
∥R∥2 ≤ 1− 1

n
+

1− ϵ

n
= 1− ϵ

n
, (4.16)

which implies the bound

P[Xt ̸= Yt] ≤
(
1− ϵ

n

)t

n ≤ ne−ϵt/n. (4.17)

A coalescence time immediately implies a mixing time bound. That is, again by Proposition B.6,

||Xt − Yt||TV ≤ P[Xt ̸= Yt] ≤ ne−ϵt/n, (4.18)

and choosing t = n
ϵ log

n
δ makes this quantity ≤ δ.

To see this in practice, let’s apply it to the Ising model.

Lemma 4.2 (Influence matrix bound for the Ising model). Consider the (ferro or antiferromagnetic) Ising
model with inverse temperature β on a graph G = (V,E) with adjacency matrix A. That is, the energy is
H(σ) = ±

∑
(i,j)∈E σiσj. Then standard Glauber dynamics (c.f. Section A) has an influence matrix R such

that

∥R∥2 ≤ tanh(β)∥A∥2. (4.19)

Proof. We compute for the ferromagnetic case but the proof is the same for the ferromagnetic case with
some sign flips. Our strategy will be to upper-bound Rij for all i, j. Fix i ̸= j ∈ [n] and σ ∈ Ω. Suppose i
has d neighbors, r of which are set to 1 (and d− r to −1). By Eq. (A.6),

πi(σ,±1) =
1± tanh

(
β
∑

j∈N(i) σ(j)
)

2
(4.20)

=
1± tanh (β(2r − d))

2
. (4.21)

To calculate Rij , we consider another bitstring ρ ∈ Ω which only differs from σ at k. If k ̸∈ N(i), the two
marginals are the same so the variation distance is 0. If k ∈ N(i),

∑
j∈N(i) ρk = 2r − d+ 2 or = 2r − d− 2.

Starting with the first case, we compute the TV distance with Lemma B.2:

||πi(σ, ·)− πi(ρ, ·)||TV =
1

2

∑
b∈{±1}

|πi(σ, b)− πi(ρ, b)| (4.22)

=
1

2
· 2
∣∣∣∣ tanh(β(2r − d))− tanh(β(2r − d+ 2))

2

∣∣∣∣ (4.23)

=
tanh(β(2r − d+ 2))− tanh(β(2r − d))

2
, (4.24)

since tanh(·) is increasing. Maximizing tanh(x+ r)− tanh(x) and equating the derivative to zero gives

sech2(x+ r) = sech2(x). (4.25)

Since sech2(·) is even and decreasing on [0,∞), we must have x+ r = −x, or in our current symbols,

β(2r − d+ 2) = −β(2r − d) =⇒ r =
d− 1

2
, (4.26)

which attains the value tanh(β(2r − d+ 2))− tanh(β(2r − d)) = 2 tanh(β). The second case is similar, also
with a maximum of 2 tanh(β) when r = d+1

2 . All in all, we get ||πi(σ, ·)− πi(ρ, ·)||TV ≤ tanh(β) and so

Rij ≤ tanh(β) for all i, j. (4.27)
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The next observation is that, by the spatial Markov property, if (i, j) ̸∈ E, that is, Aij = 0, then Rij . This can
be seen from Eq. (A.6), where πi(σ, ·) is not affected by vertices not neighbors of i, so ||πi(x, ·)− πi(y, ·)||TV

in Eq. (3.3) is zero. From these observations, we get

Rij ≤ tanh(β)Aij . (4.28)

An application of Lemma D.1 completes the proof.

Lemma 4.3 (Influence matrix for 2D Ising model). Consider the Ising model with inverse temperature β
on an n× n lattice. Then standard Glauber dynamics (c.f. Section A) has an influence matrix R such that

∥R∥2 ≤ 4 tanh(β) (4.29)

Proof. Let A be the adjacency matrix of the 2D grid. Since A is Hermitian, ∥A∥2 = max spec(|A|). The
spectrum of A is studied in Section C. By Corollary C.6, the largest eigenvalue in magnitude is given by

∥A∥2 = 4 cos

(
π

n+ 1

)
≤ 4. (4.30)

Applying Lemma 4.2 finishes the proof.

Remark 4.4 (Generalizing to any bounded degree graph). Although computing the spectrum of A is enter-
taining, we can avoid it by employing a more general argument. Since the spectrum of the adjacency matrix
of a graph is always upper-bounded by its maximum degree (see Lemma D.2 for a proof), we immediately
deduce that ∥A∥2 ≤ 4 in the 2D Ising setting.

Corollary 4.5 (Fast mixing for the 2D Ising model). Let 0 < ϵ = O(1) and suppose that

β ≤ arctanh

(
1− ϵ

4

)
. (4.31)

Then standard Glauber dynamics has a mixing time of

tmix(δ) ≤
n

ϵ
log

n

δ
. (4.32)

Proof. This follows from combining Theorem 4.1 and Lemma 4.3.

That is, Dobrushin’s criteria guarantees fast mixing beyond the threshold of β = arctanh(1/4) ≈
0.255413. Note that this is still away from the known critical threshold of βc = log(1 +

√
2)/2 ≈ 0.440687

established by Onsager [Ons44, LS12]. Fast mixing all the way to βc was proved by sharper techniques in
[MO94a, MO94b].

A Glauber dynamics

Suppose that the sample space is Ω = Σn. The generic Glauber dynamics is that, at each step, we pick
i ∈ [n] at random, and refresh it according to the marginal from the stationary distribution π. That is, if
the current state is σt ∈ Ω, then, for v ∈ Σ,

P[σt+1(i) = v] = P
σ∼π

[σ(i) = v | σ(j) = σt(j), j ̸= i]. (A.1)

For concreteness, suppose we have a graph G = (V,E) and a bitstring σ ∈ {±1}|V | has energy given by

H(σ) = −
∑

(i,j)∈E

Jijσiσj , (A.2)

for some coupling matrix J . Suppose the stationary distribution is, for some β ≥ 0,

π(σ) ∝ e−βH(σ). (A.3)
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Then we can compute the updates explicitly. Let N(i) be the neighbors of i in G. Eq. (A.1) becomes

P[σt+1(i) = ±1] =
e−β(∓

∑
j∈N(i) Jijσt(j)+rest)

e−β(∓
∑

j∈N(i) Jijσt(j)+rest) + e−β(±
∑

j∈N(i) Jijσt(j)+rest)
(A.4)

=
e±β(

∑
j∈N(i) Jijσt(j))

e±β(
∑

j∈N(i) Jijσt(j)) + e∓β(
∑

j∈N(i) Jijσt(j))
(A.5)

=
1± tanh

(
β
∑

j∈N(i) Jijσt(j)
)

2
. (A.6)

From an algorithmic perspective, this is indeed implementable since we only need the current bits and the
couplings J .

B TV distance and couplings

Here we elaborate on the key connection, used in the proof of Theorem 4.1, between a distance of distributions
and couplings of random variables. A great source for this is [LP17]; [Woo21, Col24] are also nice videos.

We start with a notion of distance between two probability distributions.

Definition B.1 (Total Variance (TV) distance). Let µ, ν : Ω → [0, 1] be two measures. The we define their
TV distance as

||µ− ν||TV = sup
A⊆Ω

|µ(A)− ν(A)|. (B.1)

That is, the TV distance is the largest separation that an event may witness. There’s an alternative
characterization of this distance that is often easier to compute.

Lemma B.2 (Another TV distance characterization). Let µ, ν : Ω → [0, 1] be two measures. Then

||µ− ν||TV =
1

2

∑
ω∈Ω

|µ(ω)− ν(ω)|. (B.2)

Figure 2: Illustration for the proof of Lemma B.2. The orange and black regions have the same area, which
equals ||µ− ν||TV.

Proof. It is helpful to consider Fig. 2. Let

A := {ω ∈ Ω: µ(ω) ≥ ν(ω)}, B := {ω ∈ Ω: ν(ω) > µ(ω)}. (B.3)
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Note that this is the greedy choice that achieves the sup in Eq. (B.1) (see orange region in Fig. 2),

||µ− ν||TV = µ(A)− ν(A). (B.4)

because if any other elements are included, they will reduce the difference. To be precise, let S ⊆ Ω and
note that

µ(S)− ν(S) ≤ µ(S ∩A)− ν(S ∩A). (removed some elements in B; difference cannot decrease)
(B.5)

≤ µ(A)− µ(A) (added some elements in A; difference cannot decrease) (B.6)

A parallel argument can be made to show that ν(B)− µ(B) also achieves the sup, as B is the greedy choice
to make this difference as large as possible (see black region in Fig. 2):

||µ− ν||TV = ν(B)− µ(B). (B.7)

This is all consistent: since A ∪B = Ω, we have

µ(A) + µ(B) = 1 = ν(A) + ν(B) =⇒ µ(A)− ν(A) = ν(B)− ν(A). (B.8)

Combining Eqs. (B.4) and (B.7), we get

||µ− ν||TV =
1

2
(µ(A)− ν(A) + ν(B)− ν(B)) (B.9)

=
1

2
(|ν(A)− µ(A)|+ |ν(B)− ν(B)|) (B.10)

=
1

2

∑
ω∈Ω

|µ(ω)− ν(ω)|. (B.11)

Example B.3 (Disjoint distributions). Let Ω = {1, 2, 3, 4} and µ({1}) = µ({2}) = 1
2 = ν({3}) = ν({4}).

Then, using Lemma B.2,

||µ− ν||TV =
1

2

(∣∣∣∣12 − 0

∣∣∣∣+ ∣∣∣∣12 − 0

∣∣∣∣+ ∣∣∣∣0− 1

2

∣∣∣∣+ ∣∣∣∣0− 1

2

∣∣∣∣) = 1. (B.12)

And in general, if µ, ν have disjoint supports, we have

||µ− ν||TV = |µ(Ω)− ν(Ω)| = 1. (B.13)

Example B.4 (Two Bernoullis). Let µ, ν be Bernoulli distributions with parameters p ≥ q respectively. We
may think of them as coins. By Lemma B.2,

||µ− ν||TV =
1

2
(|p− q|+ |(1− p)− (1− q)|) = p− q. (B.14)

We now describe couplings.

Definition B.5 (Couplings). Let µ, ν be two probability measures. A coupling of µ, ν is a pair (X,Y ) of
two jointly distributed random variables whose marginals agree with µ, ν:

P[X = x] = µ(x) and P[Y = y] = ν(y). (B.15)

Couplings are intimately related to the TV distance.

Proposition B.6 (TV distance and couplings). Let µ, ν be two probability distributions on the same space
Ω. Then

||µ− ν||TV = inf{P[X ̸= Y ] : (X,Y ) is a coupling of µ, ν}. (B.16)
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Figure 3: Illustration used in the proof of Proposition B.6

Proof. For one direction, let A ⊆ Ω. Then

µ(A)− ν(A) = P[X ∈ A]− P[Y ∈ B] (B.17)

=
(
P[X ∈ A, Y ∈ A] + P[X ∈ A, Y ̸∈ A]

)
−
(
P[Y ∈ A,X ∈ A]− P[Y ∈ A,X ̸∈ A]

)
(B.18)

= P[X ∈ A, Y ̸∈ A]
)
− P[Y ∈ A,X ̸∈ A]

)
(B.19)

≤ P[X ∈ A, Y ̸∈ A]
)

(B.20)

≤ P[X ̸= Y ]. (B.21)

Taking the supremum over A, we conclude that

||µ− ν||TV ≤ P[X ̸= Y ]. (B.22)

Conversely, to show that there is a coupling that achieves the infimum, we explicitly construct it. First
let

p =
∑
ω∈Ω

min{µ(x), ν(x)}. (B.23)

This adds the probabilities in the orange curve in Fig. 3. Note that

p =
∑

ω : µ(ω)≤ν(ω)

µ(ω) +
∑

ω : ν(ω)<µ(ω)

ν(ω) (B.24)

=

 ∑
ω : µ(ω)≤ν(ω)

µ(ω) +
∑

ω : µ(ω)>ν(ω)

µ(ω)

+

 ∑
ω : ν(ω)<µ(ω)

ν(ω)−
∑

ω : µ(ω)>ν(ω)

µ(ω)

 (B.25)

= 1− ||µ− ν||TV, (B.26)

by
∑

ω µ(ω) = 1 and Eq. (B.4). We will make X,Y agree as much as possible, which is when we are below
the orange curve. Then

• with probability p, set

X = Y = ω with probability
min{µ(ω), ν(ω)}

p
. (B.27)

This samples from the orange region in Fig. 3.
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• otherwise, set

X =

{
µ(ω)−ν(ω)
||µ−ν||TV

if µ(ω) > ν(ω),

0 otherwise,
(B.28)

which samples from the green region in Fig. 3,and

Y =

{
ν(ω)−µ(ω)
||µ−ν||TV

if ν(ω) > µ(ω),

0 otherwise,
(B.29)

which samples from the black region in Fig. 3.

We must verify a few things. First, Eq. (B.27) is a valid distribution because of Eq. (B.23). Similarly,
Eqs. (B.28) and (B.29) are also valid distributions because of Eqs. (B.4) and (B.7). Additionally, X has the
correct marginal since X = ω with probability

p · min{µ(ω), ν(ω)}
p

+ (1− p)
µ(ω)− ν(ω)

||µ− ν||TV

1{µ(ω) > ν(ω)} = µ(ω). (B.30)

This is effectively adding the green and orange regions in Fig. 3, recovering µ. By the same computation, Y
has the correct marginal, which amounts to adding the orange and black regions, recovering ν. And finally,
X ̸= Y exactly in the second case, which happens with probability 1− p = ||ν − µ||TV by Eq. (B.26).

The intuition is that TVD is measuring how much the distributions are distinguishable. The optimal
coupling can make them agree as much as they are undistinguishable; however, they have to disagree however
much they are distinguishable.

Example B.7 (Independent coupling). Consider two Bernoulli coins X,Y with probabilities p ≥ q. If we
use an independent coupling, where the joint distribution is just the product distribution. In this case,

P[X ̸= Y ] = p(1− q) + q(1− p) > p− q, (B.31)

the latter being the TV distance of their marginals Example B.4.

Example B.8 (Optimal coupling). We want to make X,Y agree as much as possible. This is usually
accomplished by sharing the same randomness. Let’s pick a uniform random number r in [0, 1] X,Y and
make X heads if r < p and Y heads if r < q. Note that they have the correct marginals. Now

P[X ̸= Y ] = P[q < r < p] = p− q. (B.32)

Hence this is an optimal coupling by Example B.4.

C Eigenvalues of the 2D grid

Let Gn be the n× n grid graph. Here we compute its eigenvalues. We will combine a few lemmas.

Definition C.1 (Graph cartesian product). Let G = (V1, E1), H = (V2, E2) be two graphs. We define the
graph cartesian product G□H := (V,E) to be the graph where V := V1×V2 and, for v1, u1 ∈ V1, v2, u2 ∈ V2,

((v1, v2), (u1, u2)) ∈ E ⇐⇒ (v1 = u1 and (v2, u2) ∈ E2) or ((v1, u1) ∈ E1 and v2 = u2). (C.1)

This is useful since Gn is a cartesian product.

Lemma C.2 (G is a cartesian product). Let Gn be the graph of a n× n grid, and let Pn be the path graph
of length n. Then

Gn = Pn□Pn. (C.2)
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Figure 4: The 4 × 4 grid is given by P4□P4. Orange edges are those where v1 = u1 and (v2, u2) ∈ E2, and
red those where (v1, u1) ∈ E1 and v2 = u2.

This can be seen from Fig. 4. That is, line up one Pn vertically and the other horizontally. The vertex
set will be the cartesian pairs, and the edges connect nearest neighbors.

Furthermore, we can characterize the adjacency matrix of a cartesian product from the adjacency matrices
of its components.

Lemma C.3 ([KR05]). Let G,H be graphs with adjacency matrices A,B respectively, where A ∈ Rn×n, B ∈
Rm×m. Then the adjacency matrix of G□H is

A⊗ Im + In ⊗B, (C.3)

where Ik is the identity matrix of dimension k.

Corollary C.4 (Eigenvalues of Gn from those of Pn). If Pn has eigenvalues {λi}ni=1, then Gn has eigenvalues

{λi + λj}ni,j=1. (C.4)

Proof. This can be seen by multiplying any eigenvector of A,B by Eq. (C.3).

All that remains then is to compute the spectrum of the path graph.

Lemma C.5 (Eigenvalues of Pn). Let Pn be the path graph on n vertices. Then its adjancency matrix has
eigenvalues {

−2 cos

(
kπ

n+ 1

)
: 1 ≤ k ≤ n

}
. (C.5)

Proof. We can see that the adjacency matrix An is a Toeplitz matrix:

An =



0 1 0 0

1 0 1 0
. . .

0 1 0 1
. . .

0 0 1 0
. . .

. . .


. (C.6)
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Let the characteristic polynomial be pn(λ) = det(An − λI). Doing the cofactor expansion, we get

pn(λ) = det



−λ 1 0 0

1 −λ 1 0
. . .

0 1 −λ 1
. . .

0 0 1 −λ
. . .

. . .


= −λpn−1(λ)− det


1 1 0

. . .

0 −λ 1
. . .

0 1 −λ
. . .

. . .

 , (C.7)

which yields the recursion

pn(λ) = −λpn−1(λ)− pn−2(λ) with p1(λ) = −λ, p0(λ) = 1. (C.8)

With the change of variables λ = −2 cos θ, we recognize that this is the recurrence relation obeyed by the
Chebyshev polynomials of the second kind. Hence

pn(λ) = Un(−λ/2). (C.9)

Since

Un(cos θ) =
sin((n+ 1)θ)

sin θ
, (C.10)

the roots of Un satisfy

sin((n+ 1)θ) = 0 but sin θ ̸= 0, so θ =
kπ

n+ 1
with 1 ≤ k ≤ n. (C.11)

Hence the roots of pn are

λk = −2 cos

(
kπ

n+ 1

)
for 1 ≤ k ≤ n. (C.12)

Applying Corollary C.4, we conclude:

Corollary C.6 (Spectrum of 2D grid). Let Gn be the graph of an n× n grid. Then its adjancency matrix
has eigenvalues {

−2 cos

(
jπ

n+ 1

)
− 2 cos

(
kπ

n+ 1

)
: 1 ≤ j, k ≤ n

}
. (C.13)

D Miscellaneous lemmas

Lemma D.1 (Spectral norm preserves inequalities of nonnegative matrices). Suppose that c ≥ 0, A, b have
nonnegative entries and

Aij ≤ cBij . (D.1)

Then

∥A∥2 ≤ c∥B∥2. (D.2)

Proof. First note that ∥A∥2 is achieved by a vector with nonnegative entries. Indeed, note that

∥Ax∥22 =
∑
i

∑
j

Aijxj

2

≤
∑
i

∑
j

|Aijxj |

2

=
∑
i

∑
j

Aij |xj |

2

= ∥A|x|∥22. (D.3)
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So let x be the unit-norm nonnegative vector which achieves the ∥A∥2. Then

∥A∥22 = ∥Ax∥22 =
∑
i

∑
j

Aijxj

2

≤
∑
i

∑
j

cBijxj

2

= c2∥Bx∥2 ≤ c2
(

max
∥y∥2=1

∥By∥2

)2

= c2∥B∥22,

(D.4)

since every term appearing is positive. Taking square roots finishes the proof.

Lemma D.2 (General bound on spectrum of a graph). Let A be the adjacency matrix of a graph with
maximum degree ∆. Then

∥A∥2 ≤ ∆. (D.5)

Proof. Since A is Hermitian and Aii = 0 for all i, by Gershgorin’s theorem we have

∥A∥2 ≤ max
j

∑
i̸=j

|Ai,j | = ∆. (D.6)
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